BMA701 & OPERATIONS RESEARCH FOR ENGINEERS

Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology Department of Electrical and Electronics Engineering

BMA701 & OPERATIONS RESEARCH FOR ENGINEERS Seventh semester (odd Semester)

Course (catalog) description

To enable the students to gain a fair knowledge on characteristics and applications of electrical drives and how to control the speed of the AC & DC Motors.

Compulsory/Elective course : Compulsory for EEE students

Credit hours & contact hours 24 & 60 hours

Course Coordinator : Dr.Ramya

Instructors : Dr.Ramya

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Dr.Ramya	Final year,	KS 304		Hod.maths@gmail.com	9.00 - 9.50 AM
	EEE		04422290125		

Relationship to other courses:

Pre – requisites : BMA502 - Numerical methods

Assumed knowledge : Engineering Maths

Syllabus Contents

LINEAR PROGRAMMING UNIT – I

Introduction to phases of Operations Research – Linear programming – formulation of the problem – graphical method - simplex method - two phase method - Assignment problems - Transportation models - Vogel's approximation method – Modi method – unbalanced transportation problem – degeneracy in transportation models.

RESOURCE SCHEDULING AND NETWORKS UNIT – II

Resource scheduling - Sequencing n jobs through 2 machines and 3 machines. Networks - PERT and CPM -Network diagrams – shortest route – minimum spanning tree – probability of achieving completion date – crash time - cost analysis - resource smoothing and resource levelling.

UNIT – III **INVENTROY AND REPLACEMENT MODELS**

Inventory models- Types of Inventory and variables in the Inventory problem - deterministic models-Replacement models – Replacement of items that deteriorate with time – equipment that fails completely and their analysis – factors for evaluation of proposals of capital expenditures and comparison and alternatives – present value average investment – rate of return pay off period – individual and group replacement policy.

QUEUEING MODELS UNIT – IV

Queuing theory – queuing system and structure – Kendalls's notation– Poisson arrival and exponential service time – characteristic of queuing models – single channel and multiple models – simulation.

DECISION MODELS UNIT –V

Game theory -Saddle point-Maximin-Minimax principle-Two person zero sum games (mixed Strategies)Graphical method for 2×n or m×2 games-Dominance Property-Oddment method

Text Books:

1. Kanti Swarup, Gupta, P.K and Manmohan, "Operations Research", Sultan Chand & Sons 1997

References:

- Handy A. Taha, "Operations Research", 7thEdn. Prentice Hall of India. 2007. 1
- Gupta and Hira DS "Operations Research", S. Chand & Co, New Delhi, 2006 2
- http://www.nptel.ac.in/syllabus/111107064/ 3.

Professional component

1		
General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

12

12

12

12

12

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 24	2 Periods
2	Cycle Test-2	September 2 nd week	Session 25 to 48	2 Periods
3	Model Test	October 2 nd week	Session 1 to 60	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To enable the students to gain a fair knowledge on characteristics and		Correla	ites to
applications of electrical drives and how to control the speed of the AC & DC		progra	m outcome
Motors.			
	н	Μ	L
Apply linear programming model and assignment model to domain specific situations	A	L	
Analyze the various methods under transportation model and apply the model for testing the closeness of their results to optimal results.	J	C,G,I	A,E
Apply the concepts of PERT and CPM for decision making and optimally managing projects	E,H		L
Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions	B,C,H,J		I
Analyze the inventory and queuing theories and apply them in domain specific situations.	E,L	A,I	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I	LINEAR PROGRAMMING		
1.	Introduction to phases of Operations Research	Yes	
2.	formulation of the problem	Yes	
3.	graphical method – simplex method – two phase method		
4.	Assignment problems – Transportation models	Yes	
5.	Vogel's approximation method – Modi method	Yes	
6.	unbalanced transportation problem – degeneracy in transportation models.YesT1,R2,T2		- I1,R2,I2
7.	Introduction to phases of Operations Research	Yes	_
8.	formulation of the problem Yes		
9.	Introduction to phases of Operations Research	luction to phases of Operations Research Yes	
10.	formulation of the problem	Yes	
11.	graphical method – simplex method – two phase method	Yes	
12.	Test	Yes	_
13.	Test	Yes	-
14.	unbalanced transportation problem – degeneracy in transportation models.	Yes	
15.	Introduction to phases of Operations Research	Yes	-
UNIT II	RESOURCE SCHEDULING AND NETWOR K	KS	
16.	Resource scheduling – Sequencing n jobs	Yes	T2,T1,R1
17.	through 2 machines and 3 machines. Networks PERT and CPM – Network diagrams – shortest route	Yes	-
18.	minimum spanning tree – probability	Yes	
19.	crash time – cost analysis	Yes	1

20.	resource smoothing and resource levelling.	Yes	
21.	Resource scheduling – Sequencing n jobs	Yes	
21.	through 2 machines and 3 machines. Networks	165	
22.	PERT and CPM – Network diagrams – shortest	Yes	
	route		
23.	minimum spanning tree – probability	Yes	
UNIT III	INVENTROY AND REPLACEMENT MODELS		
24.	Inventory models- Types of Inventory and variables in the Inventory problem		
25.	deterministic models- Replacement models	Yes	
25.	Replacement of items that deteriorate with time	Yes	
20.	– equipment that fails completely and their	163	
	analysis		
27.	factors for evaluation of proposals of capital	Yes	
	expenditures and comparison and alternatives		
28.	present value average investment – rate of	Yes	
	return pay off period – individual and group		
	replacement policy		
29.	Inventory models- Types of Inventory and	Yes	
	variables in the Inventory problem		
30.	deterministic models- Replacement models	Yes	
	QUEUEING MODELS		
31.	Queuing theory – queuing system and structure –	Yes	T3,T1,R2
	Kendalls's notation		
32.	Poisson arrival and exponential service time	Yes	
33.	Test	Yes	
34.	Test	Yes	
35.	Queuing theory – queuing system and structure –	Yes	
	Kendalls's notation		
36.	Poisson arrival and exponential service time	Yes	
37.	Test	Yes	
37. 38.	Test Test	Yes Yes	
38.	Test	Yes	
38.	Test Queuing theory – queuing system and structure –	Yes	
38. 39.	Test Queuing theory – queuing system and structure – Kendalls's notation	Yes Yes	

43.	Queuing theory – queuing system and structure –	Yes	
	Kendalls's notation		
44.	Poisson arrival and exponential service time	Yes	
45.	characteristic of queuing models	Yes	
UNIT V	DECISION MODELS		·
46.	Game theory –Saddle point-Maximin-Minimax	Yes	T1,R1,T2
47.	principle	Yes	
48.	Two person zero sum games	Yes	
49.	Graphical method for 2×n or m×2 games-Dominance Property-Oddment method.	Yes	
50.	Game theory –Saddle point-Maximin-Minimax	Yes	
51.	principle	Yes	
52.	Two person zero sum games	Yes	
53.	Graphical method for 2×n or m×2 games-Dominance Property-Oddment method.	Yes	
54.	Game theory –Saddle point-Maximin-Minimax	Yes	
55.	principle	Yes	
56.	Two person zero sum games	Yes	
57.	Graphical method for 2×n or m×2 games-Dominance Property-Oddment method.	Yes	
58.	Test	Yes	
59.	Test	Yes	
60.	Test	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	05%
Cycle Test – II	-	05%
Model Test	-	10%
Attendance	-	05%
SEMINAR&ASSIGNMENT	-	05%
Final exam	-	70%

Prepared by: Dr.RAMYA

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / EEE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) An ability to identify, formulate, and solve engineering problems.
- c) An ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) An ability to design and conduct experiments, as well as to analyze and interpret data.
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) An ability to apply reasoning informed by the knowledge of contemporary issues.
- g) An ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) An ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) An ability to function on multidisciplinary teams.
- j) An ability to communicate effectively with the engineering community and with society at large.
- k) An ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) An ability to recognize the need for, and an ability to engage in life-long learning

Program Educational Objectives

PEO1: PREPARATION

Electrical Engineering Graduates are in position with the knowledge of Basic Sciences in general and Electrical Engineering in particular so as to impart the necessary skill to analyze and synthesize electrical circuits, algorithms and complex apparatus.

PEO2: CORE COMPETENCE

Electrical Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics related to power, information and electronics hardware.

PEO3: PROFESSIONALISM

Electrical Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative acumen so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Electrical Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Electrical Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

Course Teacher	Signature
Dr.RAMYA	

Course Coordinator (Dr.RAMYA) HOD/EEE ()